firstOrderRules.key

Sorts

G

\generic G, S1, S2, H;defined in: firstOrderRules.key Line: 8 Offset :4

S1

\generic G, S1, S2, H;defined in: firstOrderRules.key Line: 8 Offset :4

S2

\generic G, S1, S2, H;defined in: firstOrderRules.key Line: 8 Offset :4

H

\generic G, S1, S2, H;defined in: firstOrderRules.key Line: 8 Offset :4

Taclets

No choice condition specified

allLeft

allLeft { \find ( \forall u ; b ==> ) \add ( {\subst u ; t } ( b )==> ) \heuristics (gamma ) };defined in: firstOrderRules.key Line: 31 Offset :4

exRight

exRight { \find ( ==> \exists u ; b ) \add ( ==> {\subst u ; t } ( b )) \heuristics (gamma ) };defined in: firstOrderRules.key Line: 36 Offset :4

allLeftHide

allLeftHide { \find ( \forall u ; b ==> ) \replacewith ( {\subst u ; t } ( b )==> ) \addrules ( insert_hidden { \add ( \forall u ; b ==> ) };) \heuristics (gamma_destructive ) };defined in: firstOrderRules.key Line: 41 Offset :4

exRightHide

exRightHide { \find ( ==> \exists u ; b ) \replacewith ( ==> {\subst u ; t } ( b )) \addrules ( insert_hidden { \add ( ==> \exists u ; b ) };) \heuristics (gamma_destructive ) };defined in: firstOrderRules.key Line: 50 Offset :4

instAll

instAll { \assumes ( \forall u ; b ==> ) \find ( t ) \add ( {\subst u ; t } ( b )==> ) };defined in: firstOrderRules.key Line: 60 Offset :4

instEx

instEx { \assumes ( ==> \exists u ; b ) \find ( t ) \add ( ==> {\subst u ; t } ( b )) };defined in: firstOrderRules.key Line: 65 Offset :4

allRight

allRight { \find ( ==> \forall u ; b ) \varcond \replacewith ( ==> {\subst u ; sk } b ) \heuristics (delta ) };defined in: firstOrderRules.key Line: 72 Offset :4

exLeft

exLeft { \find ( \exists u ; b ==> ) \varcond \replacewith ( {\subst u ; sk } b ==> ) \heuristics (delta ) };defined in: firstOrderRules.key Line: 77 Offset :4

all_unused

all_unused { \find ( \forall u ; b ) \varcond \replacewith ( b ) \heuristics (elimQuantifier ) };defined in: firstOrderRules.key Line: 84 Offset :4

ex_unused

ex_unused { \find ( \exists u ; b ) \varcond \replacewith ( b ) \heuristics (elimQuantifier ) };defined in: firstOrderRules.key Line: 90 Offset :4

eqClose

eqClose { \find ( s = s ) \replacewith ( true ) \heuristics (concrete ) };defined in: firstOrderRules.key Line: 98 Offset :4

eqSymm

eqSymm { \find ( commEqLeft = commEqRight ) \replacewith ( commEqRight = commEqLeft ) \heuristics (order_terms ) };defined in: firstOrderRules.key Line: 103 Offset :4

make_insert_eq

make_insert_eq { \find ( sr = tr ==> ) \addrules ( insert_eq { \find ( sr ) \replacewith ( tr ) };) };defined in: firstOrderRules.key Line: 109 Offset :4

make_insert_eq_nonrigid

make_insert_eq_nonrigid { \find ( s = t ==> ) \addrules ( insert_eq_nonrigid { \find ( s ) \sameUpdateLevel \replacewith ( t ) \displayname "insert_eq" };) };defined in: firstOrderRules.key Line: 118 Offset :4

insert_eq_all

insert_eq_all { \find ( sr = tr ==> ) \replacewith ( ==> ) \addrules ( auto_insert_eq { \find ( sr ) \replacewith ( tr ) \heuristics (simplify ) };) };defined in: firstOrderRules.key Line: 128 Offset :4

apply_subst

apply_subst { \find ( {\subst u ; t } target ) \replacewith ( {\subst u ; t } target ) \heuristics (try_apply_subst ) };defined in: firstOrderRules.key Line: 140 Offset :4

apply_subst_for

apply_subst_for { \schemaVar \formula phi ; \find ( {\subst u ; t } phi ) \replacewith ( {\subst u ; t } phi ) \heuristics (try_apply_subst ) \displayname "apply_subst" };defined in: firstOrderRules.key Line: 148 Offset :4

subst_to_eq

subst_to_eq { \find ( {\subst u ; t } target ) \sameUpdateLevel \varcond \replacewith ( {\subst u ; sk } target ) \add ( sk = t ==> ) \heuristics (simplify ) };defined in: firstOrderRules.key Line: 158 Offset :4

subst_to_eq_for

subst_to_eq_for { \schemaVar \formula phi ; \find ( {\subst u ; t } phi ) \sameUpdateLevel \varcond \replacewith ( {\subst u ; sk } phi ) \add ( sk = t ==> ) \heuristics (simplify ) \displayname "subst_to_eq" };defined in: firstOrderRules.key Line: 167 Offset :4

applyEq

applyEq { \assumes ( s = t1 ==> ) \find ( s ) \sameUpdateLevel \replacewith ( t1 ) \heuristics (apply_equations , apply_select_eq ) \displayname "applyEq" };defined in: firstOrderRules.key Line: 181 Offset :4

applyEqReverse

applyEqReverse { \assumes ( s = t1 ==> ) \find ( t1 ) \sameUpdateLevel \replacewith ( s ) \heuristics (apply_auxiliary_eq ) \displayname "applyEqReverse" };defined in: firstOrderRules.key Line: 190 Offset :4

applyEqRigid

applyEqRigid { \schemaVar \term [ rigid ]H tr1 ; \assumes ( sr = tr1 ==> ) \find ( sr ) \replacewith ( tr1 ) \heuristics (apply_equations ) \displayname "applyEq" };defined in: firstOrderRules.key Line: 199 Offset :4

pullOut

pullOut { \find ( t ) \sameUpdateLevel \varcond \replacewith ( sk ) \add ( t = sk ==> ) \heuristics (semantics_blasting ) };defined in: firstOrderRules.key Line: 209 Offset :4

eqTermCut

\lemma eqTermCut { \find ( t ) \sameUpdateLevel "Assume #t = #s" : \add ( t = s ==> ); "Assume #t != #s" : \add ( t != s ==> ) };defined in: firstOrderRules.key Line: 218 Offset :4

equivAllRight

\lemma equivAllRight { \find ( ==> \forall u ; b <-> \forall e2 ; c ) \varcond \add ( ==> \forall u ; ( b <-> ( {\subst e2 ; u } c ))) };defined in: firstOrderRules.key Line: 228 Offset :4

equalUnique

equalUnique { \schemaVar \term any f , f2 ; \schemaVar \formula result ; \find ( f = f2 ) \varcond \replacewith ( result ) \heuristics (concrete ) };defined in: firstOrderRules.key Line: 239 Offset :4