formulaNormalisationRules.key

Sorts

G

\generic G;defined in: formulaNormalisationRules.key Line: 10 Offset :4

H

\generic H;defined in: formulaNormalisationRules.key Line: 11 Offset :4

I

\generic I;defined in: formulaNormalisationRules.key Line: 12 Offset :4

subG

\generic subG \extends G ;defined in: formulaNormalisationRules.key Line: 13 Offset :4

NonSingleton

\generic NonSingleton \oneof {int \generic NonSingleton \oneof {int , boolean \generic NonSingleton \oneof {int \generic NonSingleton \oneof {int , boolean };defined in: formulaNormalisationRules.key Line: 14 Offset :4

Taclets

No choice condition specified

eq_imp

eq_imp { \find ( phi -> phi ) \replacewith ( true ) \heuristics (concrete ) };defined in: formulaNormalisationRules.key Line: 50 Offset :4

eq_and

eq_and { \find ( phi & phi ) \replacewith ( phi ) \heuristics (concrete ) };defined in: formulaNormalisationRules.key Line: 56 Offset :4

eq_and_2

eq_and_2 { \find ( ( psi & phi )& phi ) \replacewith ( psi & phi ) \heuristics (concrete ) };defined in: formulaNormalisationRules.key Line: 62 Offset :4

eq_or

eq_or { \find ( phi | phi ) \replacewith ( phi ) \heuristics (concrete ) };defined in: formulaNormalisationRules.key Line: 68 Offset :4

eq_or_2

eq_or_2 { \find ( ( psi | phi )| phi ) \replacewith ( psi | phi ) \heuristics (concrete ) };defined in: formulaNormalisationRules.key Line: 74 Offset :4

eq_eq

eq_eq { \find ( phi <-> phi ) \replacewith ( true ) \heuristics (concrete ) };defined in: formulaNormalisationRules.key Line: 80 Offset :4

neq_and

neq_and { \find ( phi & ( ! phi )) \replacewith ( false ) \heuristics (concrete ) };defined in: formulaNormalisationRules.key Line: 86 Offset :4

neq_and_2

neq_and_2 { \find ( ( ! phi )& phi ) \replacewith ( false ) \heuristics (concrete ) };defined in: formulaNormalisationRules.key Line: 92 Offset :4

neq_and_3

neq_and_3 { \find ( ( psi & phi )& ( ! phi )) \replacewith ( false ) \heuristics (concrete ) };defined in: formulaNormalisationRules.key Line: 98 Offset :4

neq_and_4

neq_and_4 { \find ( ( psi & ( ! phi ))& phi ) \replacewith ( false ) \heuristics (concrete ) };defined in: formulaNormalisationRules.key Line: 104 Offset :4

neq_or

neq_or { \find ( phi | ( ! phi )) \replacewith ( true ) \heuristics (concrete ) };defined in: formulaNormalisationRules.key Line: 110 Offset :4

neq_or_2

neq_or_2 { \find ( ( ! phi )| phi ) \replacewith ( true ) \heuristics (concrete ) };defined in: formulaNormalisationRules.key Line: 116 Offset :4

neq_or_3

neq_or_3 { \find ( ( psi | phi )| ( ! phi )) \replacewith ( true ) \heuristics (concrete ) };defined in: formulaNormalisationRules.key Line: 122 Offset :4

neq_or_4

neq_or_4 { \find ( ( psi | ( ! phi ))| phi ) \replacewith ( true ) \heuristics (concrete ) };defined in: formulaNormalisationRules.key Line: 128 Offset :4

nnf_ex2all

nnf_ex2all { \find ( ==> \exists u ; phi ) \replacewith ( \forall u ; ( ! phi )==> ) \heuristics (moveQuantToLeft , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 136 Offset :4

nnf_imp2or

nnf_imp2or { \find ( phi -> psi ) \replacewith ( ( ! phi )| psi ) \heuristics (negationNormalForm , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 142 Offset :4

nnf_notAll

nnf_notAll { \find ( ! ( \forall u ; phi )) \replacewith ( \exists u ; ( ! phi )) \heuristics (negationNormalForm , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 148 Offset :4

nnf_notEx

nnf_notEx { \find ( ! ( \exists u ; phi )) \replacewith ( \forall u ; ( ! phi )) \heuristics (negationNormalForm , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 154 Offset :4

nnf_notOr

nnf_notOr { \find ( ! ( phi | psi )) \replacewith ( ( ! phi )& ( ! psi )) \heuristics (negationNormalForm , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 160 Offset :4

nnf_notAnd

nnf_notAnd { \find ( ! ( phi & psi )) \replacewith ( ( ! phi )| ( ! psi )) \heuristics (negationNormalForm , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 166 Offset :4

nnf_notEqv

nnf_notEqv { \find ( ! ( phi <-> psi )) \replacewith ( phi <-> ! psi ) \heuristics (negationNormalForm , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 172 Offset :4

applyEq_and_gen0

applyEq_and_gen0 { \find ( applyEqLeft = applyEqOther & applyEqLeft = applyEqRight ) \replacewith ( applyEqRight = applyEqOther & applyEqLeft = applyEqRight ) \heuristics (apply_equations_andOr ) };defined in: formulaNormalisationRules.key Line: 180 Offset :4

applyEq_and_gen1

applyEq_and_gen1 { \find ( ( b & applyEqLeft = applyEqOther )& applyEqLeft = applyEqRight ) \replacewith ( ( b & applyEqRight = applyEqOther )& applyEqLeft = applyEqRight ) \heuristics (apply_equations_andOr ) };defined in: formulaNormalisationRules.key Line: 188 Offset :4

applyEq_and_gen2

applyEq_and_gen2 { \find ( applyEqLeft != applyEqOther & applyEqLeft = applyEqRight ) \replacewith ( applyEqRight != applyEqOther & applyEqLeft = applyEqRight ) \heuristics (apply_equations_andOr ) };defined in: formulaNormalisationRules.key Line: 196 Offset :4

applyEq_and_gen3

applyEq_and_gen3 { \find ( ( b & applyEqLeft != applyEqOther )& applyEqLeft = applyEqRight ) \replacewith ( ( b & applyEqRight != applyEqOther )& applyEqLeft = applyEqRight ) \heuristics (apply_equations_andOr ) };defined in: formulaNormalisationRules.key Line: 204 Offset :4

applyEq_or_gen0

applyEq_or_gen0 { \find ( applyEqLeft = applyEqOther | applyEqLeft != applyEqRight ) \replacewith ( applyEqRight = applyEqOther | applyEqLeft != applyEqRight ) \heuristics (apply_equations_andOr ) };defined in: formulaNormalisationRules.key Line: 212 Offset :4

applyEq_or_gen1

applyEq_or_gen1 { \find ( ( b | applyEqLeft = applyEqOther )| applyEqLeft != applyEqRight ) \replacewith ( ( b | applyEqRight = applyEqOther )| applyEqLeft != applyEqRight ) \heuristics (apply_equations_andOr ) };defined in: formulaNormalisationRules.key Line: 220 Offset :4

applyEq_or_gen2

applyEq_or_gen2 { \find ( applyEqLeft != applyEqOther | applyEqLeft != applyEqRight ) \replacewith ( applyEqRight != applyEqOther | applyEqLeft != applyEqRight ) \heuristics (apply_equations_andOr ) };defined in: formulaNormalisationRules.key Line: 228 Offset :4

applyEq_or_gen3

applyEq_or_gen3 { \find ( ( b | applyEqLeft != applyEqOther )| applyEqLeft != applyEqRight ) \replacewith ( ( b | applyEqRight != applyEqOther )| applyEqLeft != applyEqRight ) \heuristics (apply_equations_andOr ) };defined in: formulaNormalisationRules.key Line: 236 Offset :4

shift_paren_and

shift_paren_and { \find ( assoc0 & ( assoc1 & assoc2 )) \replacewith ( ( assoc0 & assoc1 )& assoc2 ) \heuristics (conjNormalForm , cnf_andAssoc ) };defined in: formulaNormalisationRules.key Line: 246 Offset :4

shift_paren_or

shift_paren_or { \find ( assoc0 | ( assoc1 | assoc2 )) \replacewith ( ( assoc0 | assoc1 )| assoc2 ) \heuristics (conjNormalForm , cnf_orAssoc ) };defined in: formulaNormalisationRules.key Line: 253 Offset :4

commute_and

commute_and { \find ( commLeft & commRight ) \replacewith ( commRight & commLeft ) \heuristics (conjNormalForm , cnf_andComm ) };defined in: formulaNormalisationRules.key Line: 260 Offset :4

commute_and_2

commute_and_2 { \find ( ( commResidue & commLeft )& commRight ) \replacewith ( ( commResidue & commRight )& commLeft ) \heuristics (conjNormalForm , cnf_andComm ) };defined in: formulaNormalisationRules.key Line: 266 Offset :4

commute_or

commute_or { \find ( commLeft | commRight ) \replacewith ( commRight | commLeft ) \heuristics (conjNormalForm , cnf_orComm ) };defined in: formulaNormalisationRules.key Line: 272 Offset :4

commute_or_2

commute_or_2 { \find ( ( commResidue | commLeft )| commRight ) \replacewith ( ( commResidue | commRight )| commLeft ) \heuristics (conjNormalForm , cnf_orComm ) };defined in: formulaNormalisationRules.key Line: 278 Offset :4

cnf_rightDist

cnf_rightDist { \find ( distLeft | ( distRight0 & distRight1 )) \replacewith ( ( distLeft | distRight0 )& ( distRight1 | distLeft )) \heuristics (conjNormalForm , cnf_dist ) };defined in: formulaNormalisationRules.key Line: 284 Offset :4

local_cut

local_cut { \find ( phi ) \replacewith ( ( ! psi | phi )& ( psi | phi )) };defined in: formulaNormalisationRules.key Line: 291 Offset :4

cnf_eqv

cnf_eqv { \find ( phi <-> psi ) \replacewith ( ( phi | ! psi )& ( ! phi | psi )) \heuristics (conjNormalForm , cnf_expandIfThenElse , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 296 Offset :4

ifthenelse_to_or_left

ifthenelse_to_or_left { \find ( \if ( phi )\then ( then )\else ( else )= t ) \replacewith ( ( ! phi | then = t )& ( phi | else = t )) \heuristics (conjNormalForm , cnf_expandIfThenElse , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 303 Offset :4

ifthenelse_to_or_left2

ifthenelse_to_or_left2 { \find ( \if ( phi )\then ( then )\else ( else )!= t ) \replacewith ( ( ! phi | then != t )& ( phi | else != t )) \heuristics (conjNormalForm , cnf_expandIfThenElse , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 309 Offset :4

ifthenelse_to_or_right

ifthenelse_to_or_right { \find ( t = \if ( phi )\then ( then )\else ( else )) \replacewith ( ( ! phi | t = then )& ( phi | t = else )) \heuristics (conjNormalForm , cnf_expandIfThenElse , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 315 Offset :4

ifthenelse_to_or_right2

ifthenelse_to_or_right2 { \find ( t != \if ( phi )\then ( then )\else ( else )) \replacewith ( ( ! phi | t != then )& ( phi | t != else )) \heuristics (conjNormalForm , cnf_expandIfThenElse , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 321 Offset :4

ifthenelse_to_or_for

ifthenelse_to_or_for { \find ( \if ( phi )\then ( b )\else ( c )) \replacewith ( ( ! phi | b )& ( phi | c )) \heuristics (conjNormalForm , cnf_expandIfThenElse , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 327 Offset :4

ifthenelse_to_or_for2

ifthenelse_to_or_for2 { \find ( ! ( \if ( phi )\then ( b )\else ( c ))) \replacewith ( ( ! phi | ! b )& ( phi | ! c )) \heuristics (conjNormalForm , cnf_expandIfThenElse , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 333 Offset :4

elim_forall0

elim_forall0 { \find ( \forall Gvar ; ( Gvar != subGterm )) \varcond \replacewith ( false ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 341 Offset :4

elim_forall1

elim_forall1 { \find ( \forall Gvar ; ( subGterm != Gvar )) \varcond \replacewith ( false ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 348 Offset :4

elim_forall2

elim_forall2 { \find ( \forall Gvar ; ( Gvar != Hterm )) \varcond \replacewith ( G :: instance ( Hterm )= FALSE ) \heuristics (elimQuantifier , elimQuantifierWithCast ) };defined in: formulaNormalisationRules.key Line: 355 Offset :4

elim_forall3

elim_forall3 { \find ( \forall Gvar ; ( Hterm != Gvar )) \varcond \replacewith ( G :: instance ( Hterm )= FALSE ) \heuristics (elimQuantifier , elimQuantifierWithCast ) };defined in: formulaNormalisationRules.key Line: 362 Offset :4

elim_forall4

elim_forall4 { \find ( \forall Gvar ; ( phi | Gvar != subGterm )) \varcond \replacewith ( {\subst Gvar ; subGterm } phi ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 369 Offset :4

elim_forall5

elim_forall5 { \find ( \forall Gvar ; ( phi | subGterm != Gvar )) \varcond \replacewith ( {\subst Gvar ; subGterm } phi ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 376 Offset :4

elim_forall6

elim_forall6 { \find ( \forall Gvar ; ( phi | Gvar != Hterm )) \varcond \replacewith ( ( {\subst Gvar ; (G ) Hterm } phi )| G :: instance ( Hterm )= FALSE ) \heuristics (elimQuantifier , elimQuantifierWithCast ) };defined in: formulaNormalisationRules.key Line: 383 Offset :4

elim_forall7

elim_forall7 { \find ( \forall Gvar ; ( phi | Hterm != Gvar )) \varcond \replacewith ( ( {\subst Gvar ; (G ) Hterm } phi )| G :: instance ( Hterm )= FALSE ) \heuristics (elimQuantifier , elimQuantifierWithCast ) };defined in: formulaNormalisationRules.key Line: 391 Offset :4

elim_forall8

elim_forall8 { \find ( \forall Gvar ; ( Gvar = subGterm -> phi )) \varcond \replacewith ( {\subst Gvar ; subGterm } phi ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 401 Offset :4

elim_forall9

elim_forall9 { \find ( \forall Gvar ; ( subGterm = Gvar -> phi )) \varcond \replacewith ( {\subst Gvar ; subGterm } phi ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 408 Offset :4

elim_forall10

elim_forall10 { \find ( \forall Gvar ; ( Gvar = Hterm -> phi )) \varcond \replacewith ( ( {\subst Gvar ; (G ) Hterm } phi )| G :: instance ( Hterm )= FALSE ) \heuristics (elimQuantifier , elimQuantifierWithCast ) };defined in: formulaNormalisationRules.key Line: 415 Offset :4

elim_forall11

elim_forall11 { \find ( \forall Gvar ; ( Hterm = Gvar -> phi )) \varcond \replacewith ( ( {\subst Gvar ; (G ) Hterm } phi )| G :: instance ( Hterm )= FALSE ) \heuristics (elimQuantifier , elimQuantifierWithCast ) };defined in: formulaNormalisationRules.key Line: 423 Offset :4

elim_forall12

elim_forall12 { \find ( \forall Gvar ; ( ( psi & Gvar = subGterm )-> phi )) \varcond \replacewith ( {\subst Gvar ; subGterm } ( psi -> phi )) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 431 Offset :4

elim_forall13

elim_forall13 { \find ( \forall Gvar ; ( ( psi & subGterm = Gvar )-> phi )) \varcond \replacewith ( {\subst Gvar ; subGterm } ( psi -> phi )) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 438 Offset :4

elim_forall14

elim_forall14 { \find ( \forall Gvar ; ( ( psi & Gvar = Hterm )-> phi )) \varcond \replacewith ( ( {\subst Gvar ; (G ) Hterm } ( psi -> phi ))| G :: instance ( Hterm )= FALSE ) \heuristics (elimQuantifier , elimQuantifierWithCast ) };defined in: formulaNormalisationRules.key Line: 445 Offset :4

elim_forall15

elim_forall15 { \find ( \forall Gvar ; ( ( psi & Hterm = Gvar )-> phi )) \varcond \replacewith ( ( {\subst Gvar ; (G ) Hterm } ( psi -> phi ))| G :: instance ( Hterm )= FALSE ) \heuristics (elimQuantifier , elimQuantifierWithCast ) };defined in: formulaNormalisationRules.key Line: 453 Offset :4

elim_forall16

elim_forall16 { \find ( \forall Gvar ; ( ( Gvar = subGterm & psi )-> phi )) \varcond \replacewith ( {\subst Gvar ; subGterm } ( psi -> phi )) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 461 Offset :4

elim_forall17

elim_forall17 { \find ( \forall Gvar ; ( ( subGterm = Gvar & psi )-> phi )) \varcond \replacewith ( {\subst Gvar ; subGterm } ( psi -> phi )) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 468 Offset :4

elim_forall18

elim_forall18 { \find ( \forall Gvar ; ( ( Gvar = Hterm & psi )-> phi )) \varcond \replacewith ( ( {\subst Gvar ; (G ) Hterm } ( psi -> phi ))| G :: instance ( Hterm )= FALSE ) \heuristics (elimQuantifier , elimQuantifierWithCast ) };defined in: formulaNormalisationRules.key Line: 475 Offset :4

elim_forall19

elim_forall19 { \find ( \forall Gvar ; ( ( Hterm = Gvar & psi )-> phi )) \varcond \replacewith ( ( {\subst Gvar ; (G ) Hterm } ( psi -> phi ))| G :: instance ( Hterm )= FALSE ) \heuristics (elimQuantifier , elimQuantifierWithCast ) };defined in: formulaNormalisationRules.key Line: 483 Offset :4

elim_exists0

elim_exists0 { \find ( \exists Gvar ; ( Gvar = subGterm )) \varcond \replacewith ( true ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 491 Offset :4

elim_exists1

elim_exists1 { \find ( \exists Gvar ; ( subGterm = Gvar )) \varcond \replacewith ( true ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 498 Offset :4

elim_exists2

elim_exists2 { \find ( \exists Gvar ; ( Gvar = Hterm )) \varcond \replacewith ( G :: instance ( Hterm )= TRUE ) \heuristics (elimQuantifier , elimQuantifierWithCast ) };defined in: formulaNormalisationRules.key Line: 505 Offset :4

elim_exists3

elim_exists3 { \find ( \exists Gvar ; ( Hterm = Gvar )) \varcond \replacewith ( G :: instance ( Hterm )= TRUE ) \heuristics (elimQuantifier , elimQuantifierWithCast ) };defined in: formulaNormalisationRules.key Line: 512 Offset :4

elim_exists4

elim_exists4 { \find ( \exists Gvar ; ( phi & Gvar = subGterm )) \varcond \replacewith ( {\subst Gvar ; subGterm } phi ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 519 Offset :4

elim_exists5

elim_exists5 { \find ( \exists Gvar ; ( phi & subGterm = Gvar )) \varcond \replacewith ( {\subst Gvar ; subGterm } phi ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 526 Offset :4

elim_exists6

elim_exists6 { \find ( \exists Gvar ; ( phi & Gvar = Hterm )) \varcond \replacewith ( ( {\subst Gvar ; (G ) Hterm } phi )& G :: instance ( Hterm )= TRUE ) \heuristics (elimQuantifier , elimQuantifierWithCast ) };defined in: formulaNormalisationRules.key Line: 533 Offset :4

elim_exists7

elim_exists7 { \find ( \exists Gvar ; ( phi & Hterm = Gvar )) \varcond \replacewith ( ( {\subst Gvar ; (G ) Hterm } phi )& G :: instance ( Hterm )= TRUE ) \heuristics (elimQuantifier , elimQuantifierWithCast ) };defined in: formulaNormalisationRules.key Line: 541 Offset :4

elim_forall_nonSingleton0

elim_forall_nonSingleton0 { \find ( \forall nonSingleVar ; ( nonSingleVar = Hterm )) \varcond \replacewith ( false ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 553 Offset :4

elim_forall_nonSingleton1

elim_forall_nonSingleton1 { \find ( \forall nonSingleVar ; ( Hterm = nonSingleVar )) \varcond \replacewith ( false ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 560 Offset :4

elim_forall_nonSingleton2

elim_forall_nonSingleton2 { \find ( \forall INTVar ; ( INTVar >= intTerm )) \varcond \replacewith ( false ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 567 Offset :4

elim_forall_nonSingleton3

elim_forall_nonSingleton3 { \find ( \forall INTVar ; ( INTVar <= intTerm )) \varcond \replacewith ( false ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 574 Offset :4

elim_forall_nonSingleton4

elim_forall_nonSingleton4 { \find ( \forall INTVar ; ( intTerm >= INTVar )) \varcond \replacewith ( false ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 581 Offset :4

elim_forall_nonSingleton5

elim_forall_nonSingleton5 { \find ( \forall INTVar ; ( intTerm <= INTVar )) \varcond \replacewith ( false ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 588 Offset :4

elim_exists_nonSingleton0

elim_exists_nonSingleton0 { \find ( \exists nonSingleVar ; ( nonSingleVar != Hterm )) \varcond \replacewith ( true ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 595 Offset :4

elim_exists_nonSingleton1

elim_exists_nonSingleton1 { \find ( \exists nonSingleVar ; ( Hterm != nonSingleVar )) \varcond \replacewith ( true ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 602 Offset :4

elim_exists_nonSingleton2

elim_exists_nonSingleton2 { \find ( \exists INTVar ; ( INTVar >= intTerm )) \varcond \replacewith ( true ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 609 Offset :4

elim_exists_nonSingleton3

elim_exists_nonSingleton3 { \find ( \exists INTVar ; ( INTVar <= intTerm )) \varcond \replacewith ( true ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 616 Offset :4

elim_exists_nonSingleton4

elim_exists_nonSingleton4 { \find ( \exists INTVar ; ( intTerm >= INTVar )) \varcond \replacewith ( true ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 623 Offset :4

elim_exists_nonSingleton5

elim_exists_nonSingleton5 { \find ( \exists INTVar ; ( intTerm <= INTVar )) \varcond \replacewith ( true ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 630 Offset :4

elim_exists_sub_1

elim_exists_sub_1 { \schemaVar \variables LocSet locVar ; \schemaVar \term LocSet locSetTermLeft , locSetTermRight ; \find ( \exists locVar ; ( subset ( locVar , locSetTermRight )& subset ( locSetTermLeft , locVar ))) \varcond \replacewith ( subset ( locSetTermLeft , locSetTermRight )) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 640 Offset :4

elim_exists_sub_1_or_phi

elim_exists_sub_1_or_phi { \schemaVar \variables LocSet locVar ; \schemaVar \term LocSet locSetTermLeft , locSetTermRight ; \find ( \exists locVar ; ( ( subset ( locVar , locSetTermRight )& subset ( locSetTermLeft , locVar ))| phi )) \varcond \replacewith ( subset ( locSetTermLeft , locSetTermRight )| \exists locVar ; phi ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 651 Offset :4

elim_exists_sub_1_and_phi

elim_exists_sub_1_and_phi { \schemaVar \variables LocSet locVar ; \schemaVar \term LocSet locSetTerm ; \find ( \exists locVar ; ( subset ( locVar , locSetTerm )& subset ( locSetTerm , locVar )& phi )) \varcond \replacewith ( \exists locVar ; ( locVar = locSetTerm & phi )) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 662 Offset :4

elim_forall_superOfAll

elim_forall_superOfAll { \schemaVar \variables LocSet locVar ; \schemaVar \term LocSet locSetTerm ; \find ( \forall locVar ; subset ( locVar , locSetTerm )) \varcond \replacewith ( locSetTerm = allLocs ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 673 Offset :4

elim_forall_subOfAll

elim_forall_subOfAll { \schemaVar \variables LocSet locVar ; \schemaVar \term LocSet locSetTerm ; \find ( \forall locVar ; subset ( locSetTerm , locVar )) \varcond \replacewith ( locSetTerm = empty ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 684 Offset :4

elim_forall_subOfAll_and_phi

elim_forall_subOfAll_and_phi { \schemaVar \variables LocSet locVar ; \schemaVar \term LocSet locSetTerm ; \find ( \forall locVar ; ( subset ( locSetTerm , locVar )& phi )) \varcond \replacewith ( locSetTerm = empty & \forall locVar ; phi ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 695 Offset :4

elim_forall_superOfAll_and_phi

elim_forall_superOfAll_and_phi { \schemaVar \variables LocSet locVar ; \schemaVar \term LocSet locSetTerm ; \find ( \forall locVar ; ( subset ( locVar , locSetTerm )& phi )) \varcond \replacewith ( locSetTerm = allLocs & \forall locVar ; phi ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 706 Offset :4

elim_forall_eqSet_imp_phi

elim_forall_eqSet_imp_phi { \schemaVar \variables LocSet locVar ; \schemaVar \term LocSet locSetTerm ; \find ( \forall locVar ; ( ( subset ( locVar , locSetTerm )& subset ( locSetTerm , locVar ))-> phi )) \varcond \replacewith ( \forall locVar ; ( locSetTerm = locVar -> phi )) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 717 Offset :4

elim_forall_leq

elim_forall_leq { \find ( \forall INTVar ; ( INTVar <= intTermLeft | INTVar >= intTermRight )) \varcond \replacewith ( intTermRight <= intTermLeft + 1 ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 729 Offset :4

elim_exists_leq

elim_exists_leq { \find ( \exists INTVar ; ( INTVar <= intTermLeft & INTVar >= intTermRight )) \varcond \replacewith ( intTermRight <= intTermLeft ) \heuristics (elimQuantifier ) };defined in: formulaNormalisationRules.key Line: 736 Offset :4

swapQuantifiersAll

swapQuantifiersAll { \find ( \forall u ; \forall v ; phi ) \replacewith ( \forall v ; \forall u ; phi ) \heuristics (swapQuantifiers ) };defined in: formulaNormalisationRules.key Line: 744 Offset :4

swapQuantifiersEx

swapQuantifiersEx { \find ( \exists u ; \exists v ; phi ) \replacewith ( \exists v ; \exists u ; phi ) \heuristics (swapQuantifiers ) };defined in: formulaNormalisationRules.key Line: 750 Offset :4

distr_forallAnd

distr_forallAnd { \find ( \forall u ; ( phi & psi )) \replacewith ( ( \forall u ; phi )& ( \forall u ; psi )) \heuristics (distrQuantifier , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 758 Offset :4

distr_existsOr

distr_existsOr { \find ( \exists u ; ( phi | psi )) \replacewith ( ( \exists u ; phi )| ( \exists u ; psi )) \heuristics (distrQuantifier , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 764 Offset :4

distr_forallOr1

distr_forallOr1 { \find ( \forall u ; ( phi | psi )) \varcond \replacewith ( ( \forall u ; phi )| psi ) \heuristics (distrQuantifier , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 770 Offset :4

distr_forallOr2

distr_forallOr2 { \find ( \forall u ; ( phi | psi )) \varcond \replacewith ( phi | ( \forall u ; psi )) \heuristics (distrQuantifier , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 777 Offset :4

distr_existsAnd1

distr_existsAnd1 { \find ( \exists u ; ( phi & psi )) \varcond \replacewith ( ( \exists u ; phi )& psi ) \heuristics (distrQuantifier , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 784 Offset :4

distr_existsAnd2

distr_existsAnd2 { \find ( \exists u ; ( phi & psi )) \varcond \replacewith ( phi & ( \exists u ; psi )) \heuristics (distrQuantifier , notHumanReadable ) };defined in: formulaNormalisationRules.key Line: 791 Offset :4

all_pull_out0

all_pull_out0 { \find ( ( \forall u ; b )& c ) \varcond \replacewith ( \forall u ; ( b & c )) \heuristics (pullOutQuantifierAll ) };defined in: formulaNormalisationRules.key Line: 800 Offset :4

all_pull_out1

all_pull_out1 { \find ( c & ( \forall u ; b )) \varcond \replacewith ( \forall u ; ( c & b )) \heuristics (pullOutQuantifierAll ) };defined in: formulaNormalisationRules.key Line: 807 Offset :4

all_pull_out2

all_pull_out2 { \find ( ( \forall u ; b )| c ) \varcond \replacewith ( \forall u ; ( b | c )) \heuristics (pullOutQuantifierAll ) };defined in: formulaNormalisationRules.key Line: 814 Offset :4

all_pull_out3

all_pull_out3 { \find ( c | ( \forall u ; b )) \varcond \replacewith ( \forall u ; ( c | b )) \heuristics (pullOutQuantifierAll ) };defined in: formulaNormalisationRules.key Line: 821 Offset :4

all_pull_out4

all_pull_out4 { \find ( ( \forall u ; b )& ( \forall u2 ; c )) \varcond \replacewith ( \forall u ; ( b & {\subst u2 ; u } c )) \heuristics (pullOutQuantifierAll , pullOutQuantifierUnifying ) };defined in: formulaNormalisationRules.key Line: 828 Offset :4

ex_pull_out0

ex_pull_out0 { \find ( ( \exists u ; b )& c ) \varcond \replacewith ( \exists u ; ( b & c )) \heuristics (pullOutQuantifierEx ) };defined in: formulaNormalisationRules.key Line: 835 Offset :4

ex_pull_out1

ex_pull_out1 { \find ( c & ( \exists u ; b )) \varcond \replacewith ( \exists u ; ( c & b )) \heuristics (pullOutQuantifierEx ) };defined in: formulaNormalisationRules.key Line: 842 Offset :4

ex_pull_out2

ex_pull_out2 { \find ( ( \exists u ; b )| c ) \varcond \replacewith ( \exists u ; ( b | c )) \heuristics (pullOutQuantifierEx ) };defined in: formulaNormalisationRules.key Line: 849 Offset :4

ex_pull_out3

ex_pull_out3 { \find ( c | ( \exists u ; b )) \varcond \replacewith ( \exists u ; ( c | b )) \heuristics (pullOutQuantifierEx ) };defined in: formulaNormalisationRules.key Line: 856 Offset :4

ex_pull_out4

ex_pull_out4 { \find ( ( \exists u ; b )| ( \exists u2 ; c )) \varcond \replacewith ( \exists u ; ( b | {\subst u2 ; u } c )) \heuristics (pullOutQuantifierEx , pullOutQuantifierUnifying ) };defined in: formulaNormalisationRules.key Line: 863 Offset :4

ifEqualsNull

ifEqualsNull { \schemaVar \term any x , y ; \find ( \if ( phi )\then ( x )\else ( y )= null ) \replacewith ( ( phi & x = null )| ( ! phi & y = null )) \heuristics (simplify ) };defined in: formulaNormalisationRules.key Line: 871 Offset :4

ifEqualsTRUE

ifEqualsTRUE { \schemaVar \term any x , y ; \find ( \if ( phi )\then ( x )\else ( y )= TRUE ) \replacewith ( ( phi & x = TRUE )| ( ! phi & y = TRUE )) \heuristics (simplify ) };defined in: formulaNormalisationRules.key Line: 880 Offset :4

ifEqualsInteger

ifEqualsInteger { \schemaVar \term any x , y ; \schemaVar \term numbers iz ; \find ( \if ( phi )\then ( x )\else ( y )= Z ( iz )) \replacewith ( ( phi & x = Z ( iz ))| ( ! phi & y = Z ( iz ))) \heuristics (simplify ) };defined in: formulaNormalisationRules.key Line: 889 Offset :4