wdFormulaRules.key

Taclets

Enabled under choices: wdChecks:onwdOperator:L

wd_Logical_Op_Neg

wd_Logical_Op_Neg { \find ( WD ( ! a )) \replacewith ( WD ( a )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 16 Offset :4

wd_Logical_Op_And

wd_Logical_Op_And { \find ( WD ( ( a & b )<< l >> )) \varcond \replacewith ( WD ( a )& WD ( b )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 27 Offset :4

wd_Logical_Op_AndSC

wd_Logical_Op_AndSC { \find ( WD ( ( ( a & b )<< l >> ))) \varcond \replacewith ( WD ( a )& ( a -> WD ( b ))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 41 Offset :4

wd_Logical_Op_Or

wd_Logical_Op_Or { \find ( WD ( ( a | b )<< l >> )) \varcond \replacewith ( WD ( a )& WD ( b )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 55 Offset :4

wd_Logical_Op_OrSC

wd_Logical_Op_OrSC { \find ( WD ( ( ( a | b )<< l >> ))) \varcond \replacewith ( WD ( a )& ( ! a -> WD ( b ))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 69 Offset :4

wd_Logical_Op_Imp

wd_Logical_Op_Imp { \find ( WD ( ( a -> b ))) \replacewith ( WD ( a )& ( a -> WD ( b ))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 83 Offset :4

wd_Logical_Op_Eqv

wd_Logical_Op_Eqv { \find ( WD ( ( a <-> b ))) \replacewith ( WD ( a )& WD ( b )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 94 Offset :4

wd_Logical_Op_Cond_Expr

wd_Logical_Op_Cond_Expr { \find ( wd ( \if ( a )\then ( s )\else ( t ))) \replacewith ( WD ( a )& ( a -> wd ( s ))& ( ! a -> wd ( t ))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 105 Offset :4

wd_Logical_Op_Cond_Form

wd_Logical_Op_Cond_Form { \find ( WD ( \if ( a )\then ( b )\else ( c ))) \replacewith ( WD ( a )& ( a -> WD ( b ))& ( ! a -> WD ( c ))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 116 Offset :4

wd_Logical_Op_ExCond_Expr

wd_Logical_Op_ExCond_Expr { \find ( wd ( \ifEx j ; ( a )\then ( s )\else ( t ))) \varcond \replacewith ( ( \forall j ; WD ( a ))& ( ( \forall j ; ! a )-> wd ( t ))& ( \forall j ; ( a -> wd ( s )))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 127 Offset :4

wd_Logical_Op_ExCond_Form

wd_Logical_Op_ExCond_Form { \find ( WD ( \ifEx j ; ( a )\then ( b )\else ( c ))) \varcond \replacewith ( ( \forall j ; WD ( a ))& ( ( \forall j ; ! a )-> WD ( c ))& ( \forall j ; ( a -> WD ( b )))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 142 Offset :4

wd_Logical_Quant_All

wd_Logical_Quant_All { \find ( WD ( \forall i ; a )) \replacewith ( \forall i ; WD ( a )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 157 Offset :4

wd_Logical_Quant_Exist

wd_Logical_Quant_Exist { \find ( WD ( \exists i ; a )) \replacewith ( \forall i ; WD ( a )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 168 Offset :4

Taclets

Enabled under choices: wdChecks:onwdOperator:D

wd_Logical_Op_Neg

wd_Logical_Op_Neg { \find ( WD ( ! a )) \replacewith ( WD ( a )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 182 Offset :4

wd_Logical_Op_And

wd_Logical_Op_And { \find ( WD ( ( a & b ))) \replacewith ( ( WD ( a )& ! a )| ( WD ( b )& ! b )| ( WD ( a )& WD ( b ))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 193 Offset :4

wd_Logical_Op_Or

wd_Logical_Op_Or { \find ( WD ( ( a | b ))) \replacewith ( ( WD ( a )& a )| ( WD ( b )& b )| ( WD ( a )& WD ( b ))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 204 Offset :4

wd_Logical_Op_Imp

wd_Logical_Op_Imp { \find ( WD ( ( a -> b ))) \replacewith ( ( WD ( a )& ! a )| ( WD ( b )& b )| ( WD ( a )& WD ( b ))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 215 Offset :4

wd_Logical_Op_Eqv

wd_Logical_Op_Eqv { \find ( WD ( ( a <-> b ))) \replacewith ( WD ( a )& WD ( b )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 226 Offset :4

wd_Logical_Op_Cond_Expr

wd_Logical_Op_Cond_Expr { \find ( wd ( \if ( a )\then ( s )\else ( t ))) \replacewith ( ( WD ( a )& wd ( s )& a )| ( WD ( a )& wd ( t )& ! a )| ( wd ( s )& wd ( t )& ( s = t ))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 237 Offset :4

wd_Logical_Op_Cond_Form

wd_Logical_Op_Cond_Form { \find ( WD ( \if ( a )\then ( b )\else ( c ))) \replacewith ( ( WD ( a )& WD ( b )& a )| ( WD ( a )& WD ( c )& ! a )| ( WD ( b )& WD ( c )& ( b <-> c ))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 248 Offset :4

wd_Logical_Op_ExCond_Expr

wd_Logical_Op_ExCond_Expr { \find ( wd ( \ifEx j ; ( a )\then ( s )\else ( t ))) \varcond \replacewith ( ( \exists j ; ( WD ( a )& wd ( s )& a & ( ( wellOrderLeqInt ( jPrime , j )& ( jPrime != j ))-> {\subst j ; jPrime } ( WD ( a )& ! a ))))| ( \forall j ; ( WD ( a )& wd ( t )& ! a ))| ( \forall j ; ( wd ( s )& wd ( t )& ( s = t )))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 259 Offset :4

wd_Logical_Op_ExCond_Form

wd_Logical_Op_ExCond_Form { \find ( WD ( \ifEx j ; ( a )\then ( b )\else ( c ))) \varcond \replacewith ( ( \exists j ; ( WD ( a )& WD ( b )& a & ( ( wellOrderLeqInt ( jPrime , j )& ( jPrime != j ))-> {\subst j ; jPrime } ( WD ( a )& ! a ))))| ( \forall j ; ( WD ( a )& WD ( c )& ! a ))| ( \forall j ; ( WD ( b )& WD ( c )& ( b <-> c )))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 278 Offset :4

wd_Logical_Quant_All

wd_Logical_Quant_All { \find ( WD ( \forall i ; a )) \replacewith ( ( \exists i ; ( WD ( a )& ! a ))| ( \forall i ; WD ( a ))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 297 Offset :4

wd_Logical_Quant_Exist

wd_Logical_Quant_Exist { \find ( WD ( \exists i ; a )) \replacewith ( ( \exists i ; ( WD ( a )& a ))| ( \forall i ; WD ( a ))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 308 Offset :4

Taclets

Enabled under choices: wdChecks:onwdOperator:Y

wd_T_Logical_Op_Neg

wd_T_Logical_Op_Neg { \find ( T ( ! a )) \replacewith ( F ( a )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 322 Offset :4

wd_F_Logical_Op_Neg

wd_F_Logical_Op_Neg { \find ( F ( ! a )) \replacewith ( T ( a )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 333 Offset :4

wd_T_Logical_Op_And

wd_T_Logical_Op_And { \find ( T ( ( a & b ))) \replacewith ( T ( a )& T ( b )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 344 Offset :4

wd_F_Logical_Op_And

wd_F_Logical_Op_And { \find ( F ( ( a & b ))) \replacewith ( F ( a )| F ( b )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 355 Offset :4

wd_T_Logical_Op_Or

wd_T_Logical_Op_Or { \find ( T ( ( a | b ))) \replacewith ( T ( a )| T ( b )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 366 Offset :4

wd_F_Logical_Op_Or

wd_F_Logical_Op_Or { \find ( F ( ( a | b ))) \replacewith ( F ( a )& F ( b )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 377 Offset :4

wd_T_Logical_Op_Imp

wd_T_Logical_Op_Imp { \find ( T ( ( a -> b ))) \replacewith ( F ( a )| T ( b )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 388 Offset :4

wd_F_Logical_Op_Imp

wd_F_Logical_Op_Imp { \find ( F ( ( a -> b ))) \replacewith ( T ( a )& F ( b )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 399 Offset :4

wd_T_Logical_Op_Eqv

wd_T_Logical_Op_Eqv { \find ( T ( ( a <-> b ))) \replacewith ( ( T ( a )& T ( b ))| ( F ( a )& F ( b ))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 410 Offset :4

wd_F_Logical_Op_Eqv

wd_F_Logical_Op_Eqv { \find ( F ( ( a <-> b ))) \replacewith ( ( T ( a )& F ( b ))| ( F ( a )& T ( b ))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 421 Offset :4

wd_Logical_Op_Cond_Expr

wd_Logical_Op_Cond_Expr { \find ( wd ( \if ( a )\then ( s )\else ( t ))) \replacewith ( ( T ( a )& wd ( s ))| ( F ( a )& wd ( t ))| ( wd ( s )& wd ( t )& ( s = t ))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 432 Offset :4

wd_T_Logical_Op_Cond_Form

wd_T_Logical_Op_Cond_Form { \find ( T ( \if ( a )\then ( b )\else ( c ))) \replacewith ( ( T ( a )& T ( b ))| ( F ( a )& T ( c ))| ( T ( b )& T ( c ))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 443 Offset :4

wd_F_Logical_Op_Cond_Form

wd_F_Logical_Op_Cond_Form { \find ( F ( \if ( a )\then ( b )\else ( c ))) \replacewith ( ( T ( a )& F ( b ))| ( F ( a )& F ( c ))| ( F ( b )& F ( c ))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 454 Offset :4

wd_Logical_Op_ExCond_Expr

wd_Logical_Op_ExCond_Expr { \find ( wd ( \ifEx j ; ( a )\then ( s )\else ( t ))) \varcond \replacewith ( ( \exists j ; ( T ( a )& wd ( s )& ( ( wellOrderLeqInt ( jPrime , j )& ( jPrime != j ))-> {\subst j ; jPrime } F ( a ))))| ( \forall j ; ( F ( a )& wd ( t )))| ( \forall j ; ( wd ( s )& wd ( t )& ( s = t )))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 465 Offset :4

wd_T_Logical_Op_ExCond_Form

wd_T_Logical_Op_ExCond_Form { \find ( T ( \ifEx j ; ( a )\then ( b )\else ( c ))) \varcond \replacewith ( ( \exists j ; ( T ( a )& T ( b )& ( ( wellOrderLeqInt ( jPrime , j )& ( jPrime != j ))-> {\subst j ; jPrime } F ( a ))))| ( \forall j ; ( F ( a )& T ( c )))| ( \forall j ; ( T ( b )& T ( c )))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 484 Offset :4

wd_F_Logical_Op_ExCond_Form

wd_F_Logical_Op_ExCond_Form { \find ( F ( \ifEx j ; ( a )\then ( b )\else ( c ))) \varcond \replacewith ( ( \exists j ; ( T ( a )& F ( b )& ( ( wellOrderLeqInt ( jPrime , j )& ( jPrime != j ))-> {\subst j ; jPrime } F ( a ))))| ( \forall j ; ( F ( a )& F ( c )))| ( \forall j ; ( F ( b )& F ( c )))) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 503 Offset :4

wd_T_Logical_Quant_All

wd_T_Logical_Quant_All { \find ( T ( \forall i ; a )) \replacewith ( \forall i ; T ( a )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 522 Offset :4

wd_F_Logical_Quant_All

wd_F_Logical_Quant_All { \find ( F ( \forall i ; a )) \replacewith ( \exists i ; F ( a )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 533 Offset :4

wd_T_Logical_Quant_Exist

wd_T_Logical_Quant_Exist { \find ( T ( \exists i ; a )) \replacewith ( \exists i ; T ( a )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 544 Offset :4

wd_F_Logical_Quant_Exist

wd_F_Logical_Quant_Exist { \find ( F ( \exists i ; a )) \replacewith ( \forall i ; F ( a )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 555 Offset :4

wd_Y_Split

wd_Y_Split { \find ( WD ( a )) \varcond \replacewith ( T ( a )| F ( a )) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 568 Offset :4

wd_T_Resolve

wd_T_Resolve { \find ( T ( a )) \varcond \replacewith ( WD ( a )& a ) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 582 Offset :4

wd_F_Resolve

wd_F_Resolve { \find ( F ( a )) \varcond \replacewith ( WD ( a )& ! a ) \heuristics (simplify ) };defined in: wdFormulaRules.key Line: 596 Offset :4